atherosclerosis

Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis

Ismail Sergin, Trent D. Evans, Xiangyu Zhang, Somashubhra Bhattacharya, Carl J. Stokes, Eric Song, Sahl Ali, Babak Dehestani, Karyn B. Holloway, Paul S. Micevych, Ali Javaheri, Jan R. Crowley, Andrea Ballabio, Joel D. Schilling, Slava Epelman, Conrad C. Weihl, Abhinav Diwan, Daping Fan, Mohamed A. Zayed & Babak Razani

Macrophages specialize in removing lipids and debris present in the atherosclerotic plaque. However, plaque progression renders macrophages unable to degrade exogenous atherogenic material and endogenous cargo including dysfunctional proteins and organelles. Here we show that a decline in the autophagy–lysosome system contributes to this as evidenced by a derangement in key autophagy markers in both mouse and human atherosclerotic plaques. By augmenting macrophage TFEB, the master transcriptional regulator …

Nat. Commun. 2017;8:15750.
Read More >

The Influence of Trehalose on Atherosclerosis and Hepatic Steatosis in Apolipoprotein E Knockout Mice

Aneta Stachowicz, Anna Wiśniewska, Katarzyna Kuś, Anna Kiepura, Anna Gębska, Mariusz Gajda, Magdalena Białas, Justyna Totoń-Żurańska, Kamila Stachyra, Maciej Suski, Jacek Jawień, Ryszard Korbut and Rafał Olszanecki

Atherosclerosis and nonalcoholic fatty liver disease (NAFLD) are frequent causes of death in the Western countries. Recently, it has been shown that autophagy dysfunction plays an important role in the pathogenesis of both atherosclerosis and NAFLD; thus, activators of autophagy might be useful for novel therapeutic interventions. Trehalose—a naturally occuring disaccharide present in plants, bacteria, fungi, insects, and certain types of shrimps—is a known inducer of autophagy. However, …

Int. J. Mol. Sci. 2019;20:1552.
Read More >